Global assembling of Academicians, Researchers, Scholars & Industry to disseminate and exchange information at 100+ Allied Academics Conferences

"Exploring Novel Innovations in the field of Polymers & Biopolymers"
- Polymer Chemistry 2021

About the Conference

On behalf of organizing committee we take great pleasure to invite participants from all over the world to attend 7th World Congress on Bio-Polymers and Polymer Chemistry, scheduled during December 06-07, 2021 an online event mainly focused on the theme “Exploring Novel Innovations in the field of Polymers & Biopolymers”. Polymer Chemistry conference aims to bring together the prominent researchers academic scientists, and research scholars to exchange and share their experiences in all aspects of Polymer Chemistry. It is also an interdisciplinary platform for researchers, practitioners, and educators to present and discuss the most recent advances, trends, and concerns as well as practical challenges and solutions adopted in the fields of polymer chemistry.
International Conference on Polymer Chemistry will focus on many interesting scientific sessions and covers all frontier topics in polymers which include Basic Principles in polymer physics, Biopolymers and Bio-Plastics, Synthetic and Green Polymers, Bio-Catalysis in Polymer Chemistry, Polymer Science and Applications and many more from across the globe, it held with the discussions on bio-polymers, polymer chemistry.

The focus is mainly on minimizing the hazards and maximizing the efficiency of any chemical choice. The conference also includes Keynote speeches by prominent personalities from around the globe in addition to both oral and poster presentations.

On behalf of Polymer Chemistry 2021, we are glad to invite contributions from the enthusiastic academicians, scientists to organize International Symposiums/Workshops that are both empirical and conceptual in exploring new dimensions of green chemistry challenges towards achieving the solutions.

Who should attend???

Research Institutes and Companies providing research products and services for the Higher Education Sector polymer scientists, technologists, Chancellors/Vice Chancellors/ Promoters / Directors / Principals / Chairpersons /Academicians / Senior Management / Administrative Heads & Decision makers of Universities /Higher Educational Institutions (Public & Private)Media… and many more

Why exhibit???

Branding and marketing opportunity Showcase opportunities available in your own market and encourage foreign universities to collaborate Opportunity to sign MoUs with Global Universities and Institutions which are interested in Global Market Opportunity to explore tie-ups for research, student and faculty exchange programs, twinning programs, etc.

Welcome message

Welcome message:

With great pleasure, we invite you to participate in the Conference on Polymer Chemistry 2021 which is going to be held on December 06-07, 2021 as an online event. The topic of the conference covers a wide range of critically important sessions related to Polymer Chemistry and its advancement. On the behalf of Scientific Committee and as Member of the scientific Committee it is a great pleasure to invite you to this enlightening Conference.

It will be the best opportunity to know and share new experiences in the field of polymers, with the most renowned Polymer speakers from all over the world, making this event the event of the year in our specialty. We look forward to meeting you and exchanging experiences, new research work and always contributing to improving the quality of life of our patients, the engine of knowledge and research in our profession. Let’s meet at the International Conference on Polymer Chemistry 2021.

Target Audience:

Eminent personalities, Directors/Managers, Head of Departmental, Presidents/Vice Presidents, CEO's, Professors, Associate and Assistant professors, Doctors, Research Scholars and students from the related fields, Other experts in Polymer Chemistry, Students, Researchers, University Professors, Delegates, Attendees etc.

Sessions and Tracks

Track 1: Polymer Physics

Polymer physics deals with the physical structure and also the properties of polymers, as well as the reaction kinetics of polymerization of monomers and degradation of polymers. Polymers are giant molecules and therefore are terribly sophisticated for resolution employing a settled methodology. In the state of liquid, polymer is strongly depends on the temperature. The thermal fluctuation affects the shape of a polymer when there is an external temperature is given to a liquid state of polymer. There are many applications of polymer physics with in the space of optoelectronics, coating, medicine, food and so on. The polymers can be made in a chain form. There are two types of polymer chain.

They are:

·         Ideal chain model

·         Real chain model

Track 2: Biopolymers and Bio-Plastics

Bio-polymers are polymers produced by living organisms; in alternative words, they are compound biomolecules. Bio-polymers provide an alternative to oil based plastics, as they are made up off plants, usually polymers of starch or polylactic acid (PLA). They are presently used for luggage bags, cutlery and plates, pens, clothing, credit cards, food packaging, agricultural films, teabags, occasional filters, diapers and napkins. Bio-plastics are plastics derived from renewable biomass sources, like vegetable fats and oils, corn starch, straw, woodchips, food waste, etc. Bio-plastics are not free of environmental impact, and the carbon emissions related to growing crops and changing these into the specified chemicals has to be taken into consideration.

There are four main kinds of bio-polymer based respectively on:

·         Starch

·         Sugar

·         Cellulose

·         Synthetic materials

Track 3: Synthetic and green Polymers

Synthetic polymers are human-made polymers. Synthetic polymers are derived from crude oil, and created by scientists and engineers. Examples of synthetic polymers include nylon, polythene, polyester, Teflon, and epoxy. Examples of naturally occurring polymers are silk, wool, DNA, polysaccharide and proteins. Green and Natural Polymers Are on the Rise. As their name implies, natural polymers (or biopolymers) are polymers that occur naturally or are produced by living organisms (such as polysaccharide, silk, chitin, protein, DNA).

Track 4: 3D Printing Polymers
The powder will be chemical compound or many other alternative materials and a range of binders will be utilized based on the powder used. Fused filament fabrication (FFF) (or fused deposition modelling – FDM) was developed in the early 1990s as another 3D printing approach that like SLS uses preformed polymer as the building material. PLA is a biodegradable plastic made from renewables such as corn-starch. While several 3D-printer manufacturers are providing metal 3D-printing services, it’ll be some time before the economies of scale that helped bring down the price of plastic 3D printing affect the DMLS market.

3 Types of Plastic Used in 3D Printing-

·         Polylactic Acid (PLA)

·         Acrylonitrile butadiene styrene (ABS)

·         Polyvinyl Alcohol Plastic (PVA)

Track 5: Polymer Science and Applications
A polymer is a massive molecule, or macromolecule, composed of many repeated subunits. Due to their broad range of properties, each artificial and natural polymer plays essential and omnipresent roles in everyday life. The field of chemical compound science includes researchers in multiple disciplines including chemistry, physics, and engineering. Polymers are studied with in the fields of physics science and macromolecular science, and polymer science (which include polymer chemistry and polymer physics).

The main polymers application areas include:

·         Biomedical Applications-Regenerative Medicine, Drug Delivery, Bone Implants and Substitutes, Biomedical Devices     related Applications, Bioactive Polymers

·         Electronics

·         Optics

·         Polymers at surfaces and interfaces

·         Energy conversion and storage

·         Packaging

Track 6: Biodegradable and Bio-Chemical Polymers
A polymer that can be decomposed by microorganism is named as biodegradable polymer. The biodegradable polymers are the polymers which are degraded by the micro-organism within a suitable period so that biodegradable polymers & their degraded products do not cause any serious affects on the environment. The decomposition reactions involve hydrolysis to non- toxic small molecules which may be metabolized by or excreted from the body. Biological polymers are large molecules composed of the many similar smaller molecules coupled along in an exceedingly chain-like fashion. The individual smaller molecules are called monomers. When small organic molecules are joined together, they can form giant molecules or polymers Natural polymers are used to build tissue and other elements in living organisms.

·         Preparation of peg/chitosan bio composites

·         Molecularly imprinted hydrogels as potential carriers

·         Spray dried hydroxyapatite-polymer composites

·         Polymers with additives

·         Biological Polymers- Proteins, Carbohydrates, Lipids

Track 7: Polymer Engineering and Technology
Polymer engineering is mostly associated with an engineering field that designs, analyses, and modifies polymer materials. Engineering polymers are materials with superior structure–property correlations. These properties enable the use of the engineering polymers in specific, high-end applications in automotive and aerospace industries. The recent developments of chemical compound have revolutionized the sphere of fabric science increasing the use of chemical compound primarily based substances from building materials to Packing materials, Fancy decoration articles, Electrical engineering, Communications, Automobile, Aircrafts, etc.

Plastics engineering specialties:

·         Medical plastics

·         Consumer Plastics

·         Recycled or recyclable plastics

·         Automotive plastics

·         Elastomers / rubber

·         Biodegradable plastics

·         Plastics processing

Track 8: Nano -Polymers and Nanotechnology
Polymer Nano-composites consist of a polymer or copolymer having Nano particles dispersed in the polymer matrix. Polymer nanotechnology group can develop enabling techniques for the patterning of practical surfaces. Polymer Nano science is that the study and application of Nano science to polymer-nanoparticle matrices, wherever nanoparticles are those with at least one dimension of less than 100 nm. The most common type of filler particles utilized by the tire industry had traditionally been Carbon black (Cb), produced from the incomplete combustion of coal tar and ethylene.

·         Bio-hybrid polymer Nano-fibers

·         Bio-hybrid nanofibres by electrospinning

·         Bio-hybrid polymer nanotubes by wetting

·         Tissue engineering

Track 9: Polymers in Medicine
Polymers play a crucial role in medical applications and biomaterials are already habitually used in clinical applications. However, several medically approved polymers are not yet optimized for their aspired application. Properties such as mechanical characteristics, plasticity and degradation behaviour need to be adapted to the designated application. For medical applications, the surface properties are of major importance. Polymers are also constantly gaining attention in trendy biomaterial analysis wherever polymeric materials should act as mechanically stable, degradable and custom-made scaffolds, drug carriers or hydrogel-based artificial biomimetic living thing matrix. In this space, major progresses can be achieved via 3D printing of hierarchical materials with tissue-like structures.

·         Polymers for Artificial Joints

·         Bioabsorbable Polymers for surgical applications

·         Adhesives for medical applications

Track 10: Applications of Polymer
Modern scientific tools revolutionized the process of polymers thus available synthetic polymers like useful plastics, rubbers and fiber materials. For every polymer application, understanding which materials are optimal for their purpose permits accurate prediction of behaviour and performance over their lifecycle in real world conditions. When considering a polymer application, understanding how a material behaves over time allows us to assess its potential application and use. Molecular science has developed enormously in recent eras. It has become a necessity in our daily routines we shall talk now about the basic applications of polymers without which life wasn’t that easy. Polymeric materials tested include raw materials, compounds, foams, structural adhesives and composites, fillers, fibres, films, membranes, emulsions, coatings, rubbers, sealing materials, solvents, inks and pigments.

·         In aircraft, aerospace, and sports equipment

·         Polymers in holography

·         Biopolymers in molecular recognition

·         Organic polymer flocculants in water purification

·         Polymeric Biomolecules

·         Monomeric Units

·         Renewable Biomass Sources

Track 11: Recent Advances in Polymer Chemistry
Polymer drug conjugates play a crucial role in the delivery of drugs. In the polymeric drug conjugates, the bioactive agent is combined covalently with chemical the substance to realize the efficient delivery of bioactive agents with in the required or specific period of time along with the enhancement of permeability and retention time. Among them, could be a biodegradable polymer having versatile nature due to its 2 chemical element atoms connected on each sides of phosphorus atom of its polymeric backbone, it can be easily replaced by nucleophilic substitution reaction. Plastic packaging for food and non-food applications is non-biodegradable, and also uses up valuable and scarce non-renewable resources like fossil fuel.

·         Inter facial Polymerization

·         Polyaramids and Polyimides

·         Enhanced tumor targeted gene delivery

·         Polypeptide Synthesis

Track 12: Dendrimers

Dendrimers are polymers with branched, tree-like structures. They are of interest in applications such as drug delivery and catalysis. Dendrimers are nano-sized, radially symmetric molecules with well-defined, homogeneous, and monodisperse structure that has a typically symmetric core, an inner shell, and an outer shell. Dendrimers are highly ordered, branched polymeric molecules. Synonymous terms for dendrimer include arborols and cascade molecules.

Track 13: Organic Plastics

Plastics are generally organic polymers of high molecular mass, and sometimes contain different substances. They're typically artificial, most typically derived from petrochemicals, however, associate array of variants square measure made of renewable materials like polylactic acid from corn, or Cellulosic from cotton linters.
Plastic is associate organic waste. As basic components of its monomers primarily comprises Carbon and gas. We are able to simply divide waste particles in to 2 varieties, like organic waste and inorganic waste. Inorganic waste is that the form of material that isn't rotten in soil.

·         Polyethylene Terephthalate (PET or PETE or Polyester)

·         High-Density Polyethylene (HDPE)

·         Polyvinyl Chloride (PVC)

·         Low-Density Polyethylene (LDPE)

·         Polypropylene (PP)

·         Polystyrene (PS)

Market Analysis

Recent trend observed with in the global polymer market is increasing demand for polymers in numerous industries, including building and construction, packaging, consumer goods, electronics and telecommunication, and automotive. These industries are primarily substituting paper, glass, and metals with polymers, as a result of their low weight and price. The market has seen a significant growth in developing countries such as India, China, and Brazil, as consumers’ purchasing power is increasing. Also, population of these countries are increasing, which increase the demand for essential products, which in turn, is driving the market growth.


The global polymers market size was at around $666.5 billion as of 2018, and its value is poised to grow at a CAGR of 5.1% during the forecast period (2019-2025). Increasing consumption of polymers in various end-user industries such as packaging, construction, automobiles, and healthcare, for the manufacturing of elastomers, adhesives, and surface coatings, is projected to fuel the growth of the market. Polymeric materials are usually obtained from oils such as petroleum and crude oil, but significant research is initiated to develop innovative methods of producing these materials using renewable energy sources.


Allied Academies welcomes all the polymer chemists, technologists, research scholars, industrial professionals and student delegates from chemical sectors to be a part of the esteemed Polymer Chemistry 2020. This will be the best amalgamation of academic research and industrial innovations, involving every aspect of bio-polymers and polymer chemistry techniques. However, it is open to all types of advanced research methodologies both from academia and industry. 

Organizing Committee
OCM Member
Bing-Huei Chen
professor, Food Science & Technology
Fu Jen Catholic University
New Taipei City, China
OCM Member
Lawrence Berliner
The Ohio State University
Columbus, USA
OCM Member
Eliade Stefanescu
professor, Faculty of Electronics
Advanced Studies in Physics Center of the Romanian Academy
Bucharest, Romania
OCM Member
LAAR, University of Science and Technology
Béjaïa , Algeria
OCM Member
Ahmed Kadhim Hussein
University of Babylon
Baghdad, Iraq
OCM Member
LI Kwok Yiu Robert
Dublin University, Ireland
Yuk Choi Rd , Hong Kong
OCM Member
Ivan Bozovic
Group Leader and Principal Investigator, Center for Emergent Superconductivity
Brookhaven National Laboratory
Utica , USA
OCM Member
Reza Jamshidi Rodbari
R&C Jam Catalyst Co-LTD
João Pessoa, Brazil
OCM Member
Aharon Gedanken
Bar-Ilan University
Israel, Israel
OCM Member
Chandra P. Sharma
Sree Chitra Tirunal Institute for Medical Sciences & Technology
Trivandrum, India
OCM Member
Professor of Food Science and Engineering ,Research Director.
Middle East Technical University (METU)
Istanbul, Turkey
OCM Member
Yazen M Alnouti
Associate Professor, Department of Pharmaceutical Sciences
University of Nebraska Medical Center
Omaha, USA
OCM Member
Srinivasu Vallabhapurapu
University of South Africa
Pretoria, South Africa
OCM Member
Ben Ale
Emeritus professor, Safety Science (chemistry & Risk management)
Delft university of technology
Delft, Europe
OCM Member
Giancarlo Galli
Professor , Chemistry and Industrial Chemistry
University of Pisa
Catanzar , Italy
OCM Member
Anastasios I. Zouboulis
Professor, Chemistry Division of Chemical Technology
Chemical Technology Aristotle University of Thessaloniki
Thessaloniki, Greece
OCM Member
Margherita Venturi
Professor, General and Inorganic Chemistry
University of bologna
Bologna, Italy
OCM Member
CEO , polymer
P.G.Center, GSC Chitradurga
Bengaluru, India

To Collaborate Scientific Professionals around the World

Conference Date December 6-7, 2021
Speaker Oppurtunity
e-Poster Oppurtunity Available
Join The Discussion

Allied Academies Global Conference Directory

Mail us at

Drop us an email for Program enquiry.
Sponsors / Exhibiting / Advertising.
Program Director
More details about

Terms and Conditions


Delegates are personally responsible for their belongings at the venue. The Organizers will not be held responsible for any stolen or missing items belonging to Delegates, Speakers or Attendees; due to any reason whatsoever.


Registration fees do not include insurance of any kind.


Please note that any (or) all transportation and parking is the responsibility of the registrant.


Press permission must be obtained from 3rd World Congress on Bio-Polymers and Polymer Chemistry Organizing Committee prior to the event. The press will not quote speakers or delegates unless they have obtained their approval in writing. The Allied Academies Ltd is an objective third-party non-profit organization. This conference is not associated with any commercial meeting company.

Requesting an Invitation Letter

For security purposes, letter of invitation will be sent only to those individuals who had registered for the conference. Once your registration is complete, please contact to request a personalized letter of invitation.

Regarding refunds, all bank charges will be for the registrant's account.

This cancellation policy was last updated on February 5, 2021

Cancellation, Postponement, and Transfer of Registration

All cancellations or modifications of registration must be made in writing to

Cancellation Policy

If 3rd World Congress on Bio-Polymers and Polymer Chemistry Group cancels this event for any reason, you will receive a credit for 100% of the registration fee paid. You may use this credit for another Allied Academies Group event which must occur within one year from the date of cancellation.


If 4th World Congress on Bio-Polymers and Polymer Chemistry Group postpones an event for any reason and you are unable or unwilling to attend on rescheduled dates, you will receive a credit for 100% of the registration fee paid. You may use this credit for another Allied Academies Ltd event which must occur within one year from the date of postponement.

Transfer of registration

All fully paid registrations are transferable to other persons from the same organization if the registered person is unable to attend the event. Transfers must be made by the registered person in writing to Details must be included the full name of replacement person, their title, contact phone number, and email address. All other registration details will be assigned to the new person unless otherwise specified.

Registration can be transferred to one conference to another conference of Allied Academies Ltd if the person is unable to attend one of the conferences.

However, Registration cannot be transferred if it is intimated within 14 days of the respective conference.

The transferred registrations will not be eligible for Refund.

Visa Information

Keeping in view of increased security measures, we would like to request all the participants to apply for Visa as soon as possible.

Allied Academies Ltd will not directly contact embassies and consulates on behalf of visa applicants. All delegates or invitees should apply for Business Visa only.

Important note for failed visa applications: Visa issues cannot come under the consideration of cancellation policy of Allied Academies Ltd, including the inability to obtain a visa.

Refund Policy:

If the registrant is unable to attend and is not in a position to transfer his/her participation to another person or event, then the following refund arrangements apply:

Keeping in view of advance payments towards Venue, Printing, Shipping, Hotels and other overheads, we had to keep Refund Policy is as following slabs-

  • Before 90 days of the conference: Eligible for Full Refund less $100 Service Fee
  • Within 90-60 days of Conference: Eligible for 50% of payment Refund
  • Within 60 days of Conference: Not eligible for Refund
  • E-Poster Payments will not be refunded.

Accommodation Cancellation Policy:

Accommodation Providers (Hotels) have their own cancellation policies, and they generally apply when cancellations are made less than 30 days prior to arrival. Please contact us as soon as possible, if you wish to cancel or amend your accommodation. Allied Academies Ltd will advise the cancellation policy of your accommodation provider, prior to cancelling or amending your booking, to ensure you are fully aware of any non-refundable deposits.


Authorization Policy

Copyright © 2021-2022 Allied Academies, All Rights Reserved.